A class of measures and non-stationary fractals, associated to f-expansions (1308.5543v1)
Abstract: We construct first a class of Moran fractals in Rd with countably many generators and non-stationary contraction rates; at each step n, the contractions depend on n-truncated sequences, and are related to asymptotic letter frequencies. In some cases the sets of contractions may be infinite at each step. We show that the Hausdorff dimension of such a fractal is equal to the zero h of a pressure function. We prove that the dimensions of these sets depend real analytically on the frequencies. Next, we apply the above construction to obtain non-stationary fractals E(x; f) \subset Rd, associated to f-expansions of real numbers x, and study the dependence of these fractals on x. We consider for instance beta-expansions, the continued fraction expansion and other f-expansions. By employing the Ergodic Theorem for invariant absolutely continuous measures and equilibrium measures, and using some probabilities for which the digits become independent random variables, we study the function x \to dim_H(E(x; f)) on the respective set of quasinormal numbers x \in [0; 1). We investigate also another class of fractals \tilde E_f (x) \subset Rd, for which both the non-stationary contraction vectors and the asymptotic frequencies depend on the f-representation of x. We obtain then some properties of the digits of x, related to \tilde E_f (x) and to equilibrium measures.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.