Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Dynamical versus diffraction spectrum for structures with finite local complexity (1307.7518v2)

Published 29 Jul 2013 in math.DS

Abstract: It is well-known that the dynamical spectrum of an ergodic measure dynamical system is related to the diffraction measure of a typical element of the system. This situation includes ergodic subshifts from symbolic dynamics as well as ergodic Delone dynamical systems, both via suitable embeddings. The connection is rather well understood when the spectrum is pure point, where the two spectral notions are essentially equivalent. In general, however, the dynamical spectrum is richer. Here, we consider (uniquely) ergodic systems of finite local complexity and establish the equivalence of the dynamical spectrum with a collection of diffraction spectra of the system and certain factors. This equivalence gives access to the dynamical spectrum via these diffraction spectra. It is particularly useful as the diffraction spectra are often simpler to determine and, in many cases, only very few of them need to be calculated.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.