- The paper introduces a novel SW potential for single-layer MoS2, validated against experimental phonon spectra to capture critical vibrational modes.
- MD simulations reveal free edge effects on mechanical properties, with Young’s modulus dropping in narrow nanoribbons and varying by edge orientation.
- Thermal conductivity is shown to be strain-sensitive, with an 8% uniaxial strain reducing conductivity by about 40%, enabling thermal property tuning.
Atomistic Simulations of Molybdenum Disulphide
This paper presents a Stillinger-Weber (SW) potential parameterization for single-layer molybdenum disulfide (SLMoS2), enabling efficient molecular dynamics (MD) simulations to investigate its mechanical and thermal properties. The paper emphasizes the role of free edges on the mechanical and thermal behavior of SLMoS2 nanoribbons, revealing significant edge effects on Young's modulus and thermal conductivity. Furthermore, the paper examines the manipulation of thermal conductivity through uniaxial strain in periodic SLMoS2.
SW Potential Parameterization
The authors developed a SW potential parameterized by fitting to the experimentally-obtained phonon spectrum of SLMoS2.TheSWpotentialformincludestwo−bodyandthree−bodyinteractionterms,representedas:</p><p>Two−bodyinteraction:</p><p>V_{2}=\epsilon A\left(B\sigma^{p}r_{ij}^{-p}-\sigma^{q}r_{ij}^{-q}\right)e^{[\sigma\left(r_{ij}-a\sigma\right)^{-1}]}</p><p>Three−bodyinteraction:</p><p>V_{3}=\epsilon\lambda e^{\left[\gamma\sigma\left(r_{ij}-a\sigma\right)^{-1}+\gamma\sigma\left(r_{jk}-a\sigma\right)^{-1}\right]}\left(\cos\theta_{jik}-\cos\theta_{0}\right)^{2}</p><p>FivedistinctSWpotentialtermswereintroducedtocaptureessentialinteractionswithinSLMoS_{2}:V_{2}(Mo-S),V_{2}(S-S),V_{2}(Mo-Mo),V_{3}(Mo-S-S),andV_{3}(S-Mo-Mo).Theparametrizationsuccessfullyreproducestheenergygaparound250cm^{-1}$ and the crossover in the phonon spectrum, aligning with experimental data.</p>
<h2 class='paper-heading' id='mechanical-properties'>Mechanical Properties</h2>
<p>The SW potential accurately predicts the Young's modulus of SLMoS$_{2}withperiodicboundaryconditions(PBCs),yieldingavalueof229.0GPa,consistentwithexperimentalmeasurements.MDsimulationsonSLMoS_{2}$ nanoribbons with free boundary conditions (FBCs) reveal significant edge effects on the Young's modulus, demonstrating a decrease in Young's modulus as the width of the nanoribbon decreases. The Young's modulus is smaller for armchair SLMoS$_{2}thanzigzagSLMoS_{2},andbothconvergetothesamevalueasinthePBCcalculation,i.e.229.0GPa,whichcorrespondstoSLMoS_{2}withoutedgeeffects,asthewidthincreases.</p><h2class=′paper−heading′id=′thermal−conductivity′>ThermalConductivity</h2><p>MDsimulationsusingtheparameterizedSWpotentialinvestigatethethermalconductivityofSLMoS_{2}.Theresultsindicateanotablereductioninthermalconductivityduetofreeedges,whichinduceameltingphenomenonattemperaturessignificantlybelowthebulkmeltingtemperature.Uniaxialstrainisshowntoefficientlymanipulatethethermalconductivityofinfinite,periodicSLMoS_{2},withan8<h2class=′paper−heading′id=′implications−and−future−directions′>ImplicationsandFutureDirections</h2><p>ThispaperprovidesvaluableinsightsintotheatomisticbehaviorofSLMoS_{2},offeringacomputationallyefficientSWpotentialforMDsimulations.ThefindingshighlighttheimportanceofconsideringedgeeffectswhendesigningandutilizingSLMoS_{2}nanostructuresformechanicalandthermalapplications.Theobservedstrain−dependentthermalconductivityopensavenuesfortailoringthermalpropertiesinSLMoS_{2}−baseddevices.FutureresearchcouldfocusonextendingtheSWpotentialtomulti−layerMoS_{2}$ systems and exploring the influence of defects and chemical functionalization on mechanical and thermal properties.