Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MIRAGE: An Iterative MapReduce based FrequentSubgraph Mining Algorithm (1307.5894v1)

Published 22 Jul 2013 in cs.DB and cs.DC

Abstract: Frequent subgraph mining (FSM) is an important task for exploratory data analysis on graph data. Over the years, many algorithms have been proposed to solve this task. These algorithms assume that the data structure of the mining task is small enough to fit in the main memory of a computer. However, as the real-world graph data grows, both in size and quantity, such an assumption does not hold any longer. To overcome this, some graph database-centric methods have been proposed in recent years for solving FSM; however, a distributed solution using MapReduce paradigm has not been explored extensively. Since, MapReduce is becoming the de- facto paradigm for computation on massive data, an efficient FSM algorithm on this paradigm is of huge demand. In this work, we propose a frequent subgraph mining algorithm called MIRAGE which uses an iterative MapReduce based framework. MIRAGE is complete as it returns all the frequent subgraphs for a given user-defined support, and it is efficient as it applies all the optimizations that the latest FSM algorithms adopt. Our experiments with real life and large synthetic datasets validate the effectiveness of MIRAGE for mining frequent subgraphs from large graph datasets. The source code of MIRAGE is available from www.cs.iupui.edu/alhasan/software/

Citations (93)

Summary

We haven't generated a summary for this paper yet.