Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A large-scale and fault-tolerant approach of subgraph mining using density-based partitioning (1212.0017v2)

Published 30 Nov 2012 in cs.DB, cs.DC, and cs.SI

Abstract: Recently, graph mining approaches have become very popular, especially in domains such as bioinformatics, chemoinformatics and social networks. In this scope, one of the most challenging tasks is frequent subgraph discovery. This task has been motivated by the tremendously increasing size of existing graph databases. Since then, an important problem of designing efficient and scaling approaches for frequent subgraph discovery in large clusters, has taken place. However, failures are a norm rather than being an exception in large clusters. In this context, the MapReduce framework was designed so that node failures are automatically handled by the framework. In this paper, we propose a large-scale and fault-tolerant approach of subgraph mining by means of a density-based partitioning technique, using MapReduce. Our partitioning aims to balance computation load on a collection of machines. We experimentally show that our approach decreases significantly the execution time and scales the subgraph discovery process to large graph databases.

Citations (41)

Summary

We haven't generated a summary for this paper yet.