Umbral Moonshine and the Niemeier Lattices (1307.5793v2)
Abstract: In this paper we relate umbral moonshine to the Niemeier lattices: the 23 even unimodular positive-definite lattices of rank 24 with non-trivial root systems. To each Niemeier lattice we attach a finite group by considering a naturally defined quotient of the lattice automorphism group, and for each conjugacy class of each of these groups we identify a vector-valued mock modular form whose components coincide with mock theta functions of Ramanujan in many cases. This leads to the umbral moonshine conjecture, stating that an infinite-dimensional module is assigned to each of the Niemeier lattices in such a way that the associated graded trace functions are mock modular forms of a distinguished nature. These constructions and conjectures extend those of our earlier paper, and in particular include the Mathieu moonshine observed by Eguchi-Ooguri-Tachikawa as a special case. Our analysis also highlights a correspondence between genus zero groups and Niemeier lattices. As a part of this relation we recognise the Coxeter numbers of Niemeier root systems with a type A component as exactly those levels for which the corresponding classical modular curve has genus zero.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.