Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Power-Expected-Posterior Priors for Variable Selection in Gaussian Linear Models (1307.2442v2)

Published 9 Jul 2013 in stat.CO

Abstract: In the context of the expected-posterior prior (EPP) approach to Bayesian variable selection in linear models, we combine ideas from power-prior and unit-information-prior methodologies to simultaneously produce a minimally-informative prior and diminish the effect of training samples. The result is that in practice our power-expected-posterior (PEP) methodology is sufficiently insensitive to the size n* of the training sample, due to PEP's unit-information construction, that one may take n* equal to the full-data sample size n and dispense with training samples altogether. In this paper we focus on Gaussian linear models and develop our method under two different baseline prior choices: the independence Jeffreys (or reference) prior, yielding the J-PEP posterior, and the Zellner g-prior, leading to Z-PEP. We find that, under the reference baseline prior, the asymptotics of PEP Bayes factors are equivalent to those of Schwartz's BIC criterion, ensuring consistency of the PEP approach to model selection. We compare the performance of our method, in simulation studies and a real example involving prediction of air-pollutant concentrations from meteorological covariates, with that of a variety of previously-defined variants on Bayes factors for objective variable selection. Our prior, due to its unit-information structure, leads to a variable-selection procedure that (1) is systematically more parsimonious than the basic EPP with minimal training sample, while sacrificing no desirable performance characteristics to achieve this parsimony; (2) is robust to the size of the training sample, thus enjoying the advantages described above arising from the avoidance of training samples altogether; and (3) identifies maximum-a-posteriori models that achieve good out-of-sample predictive performance.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.