Papers
Topics
Authors
Recent
2000 character limit reached

Triangulated surfaces in triangulated categories

Published 11 Jun 2013 in math.AG and math.AT | (1306.2545v3)

Abstract: For a triangulated category A with a 2-periodic dg-enhancement and a triangulated oriented marked surface S we introduce a dg-category F(S,A) parametrizing systems of exact triangles in A labelled by triangles of S. Our main result is that F(S,A) is independent on the choice of a triangulation of S up to essentially unique Morita equivalence. In particular, it admits a canonical action of the mapping class group. The proof is based on general properties of cyclic 2-Segal spaces. In the simplest case, where A is the category of 2-periodic complexes of vector spaces, F(S,A) turns out to be a purely topological model for the Fukaya category of the surface S. Therefore, our construction can be seen as implementing a 2-dimensional instance of Kontsevich's program on localizing the Fukaya category along a singular Lagrangian spine.

Citations (68)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.