Triangulated surfaces in triangulated categories
Abstract: For a triangulated category A with a 2-periodic dg-enhancement and a triangulated oriented marked surface S we introduce a dg-category F(S,A) parametrizing systems of exact triangles in A labelled by triangles of S. Our main result is that F(S,A) is independent on the choice of a triangulation of S up to essentially unique Morita equivalence. In particular, it admits a canonical action of the mapping class group. The proof is based on general properties of cyclic 2-Segal spaces. In the simplest case, where A is the category of 2-periodic complexes of vector spaces, F(S,A) turns out to be a purely topological model for the Fukaya category of the surface S. Therefore, our construction can be seen as implementing a 2-dimensional instance of Kontsevich's program on localizing the Fukaya category along a singular Lagrangian spine.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.