Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deciphering the global organization of clustering in real complex networks (1306.0112v1)

Published 1 Jun 2013 in physics.soc-ph, cond-mat.dis-nn, and cs.SI

Abstract: We uncover the global organization of clustering in real complex networks. As it happens with other fundamental properties of networks such as the degree distribution, we find that real networks are neither completely random nor ordered with respect to clustering, although they tend to be closer to maximally random architectures. We reach this conclusion by comparing the global structure of clustering in real networks with that in maximally random and in maximally ordered clustered graphs. The former are produced with an exponential random graph model that maintains correlations among adjacent edges at the minimum needed to conform with the expected clustering spectrum; the later with a random model that arranges triangles in cliques inducing highly ordered structures. To compare the global organization of clustering in real and model networks, we compute $m$-core landscapes, where the $m$-core is defined, akin to the $k$-core, as the maximal subgraph with edges participating at least in $m$ triangles. This property defines a set of nested subgraphs that, contrarily to $k$-cores, is able to distinguish between hierarchical and modular architectures. To visualize the $m$-core decomposition we developed the LaNet-vi 3.0 tool.

Citations (61)

Summary

We haven't generated a summary for this paper yet.