Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 26 tok/s Pro
GPT-4o 98 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 216 tok/s Pro
2000 character limit reached

Floquet theory based on new periodicity concept for hybrid systems involving $q$-difference equations (1305.7110v3)

Published 30 May 2013 in math.DS

Abstract: Using the new periodicity concept based on shifts, we construct a unified Floquet theory for homogeneous and nonhomogeneous hybrid periodic systems on domains having continuous, discrete or hybrid structure. New periodicity concept based on shifts enables the construction of Floquet theory on hybrid domains that are not necessarily additive periodic. This makes periodicity and stability analysis of hybrid periodic systems possible on non-additive domains. In particular, this new approach can be useful to know more about Floquet theory for linear $q$-difference systems defined on $\overline{q{\mathbb{Z}}}:={q{n}% :n\in\mathbb{Z}} \cup {0}$ where $q>1$. By constructing the solution of matrix exponential equation we establish a canonical Floquet decomposition theorem. Determining the relation between Floquet multipliers and Floquet exponents, we give a spectral mapping theorem on closed subsets of reals that are periodic in shifts. Finally, we show how the constructed theory can be utilized for the stability analysis of dynamic systems on periodic time scales in shifts.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.