Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Symmetric Rank-one Quasi Newton Method for Non-negative Matrix Factorization (1305.5829v1)

Published 24 May 2013 in math.NA, cs.LG, and cs.NA

Abstract: As we all known, the nonnegative matrix factorization (NMF) is a dimension reduction method that has been widely used in image processing, text compressing and signal processing etc. In this paper, an algorithm for nonnegative matrix approximation is proposed. This method mainly bases on the active set and the quasi-Newton type algorithm, by using the symmetric rank-one and negative curvature direction technologies to approximate the Hessian matrix. Our method improves the recent results of those methods in [Pattern Recognition, 45(2012)3557-3565; SIAM J. Sci. Comput., 33(6)(2011)3261-3281; Neural Computation, 19(10)(2007)2756-2779, etc.]. Moreover, the object function decreases faster than many other NMF methods. In addition, some numerical experiments are presented in the synthetic data, imaging processing and text clustering. By comparing with the other six nonnegative matrix approximation methods, our experiments confirm to our analysis.

Citations (4)

Summary

We haven't generated a summary for this paper yet.