Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Note on the Unsolvability of the Weighted Region Shortest Path Problem (1305.5209v1)

Published 22 May 2013 in cs.CG

Abstract: Let S be a subdivision of the plane into polygonal regions, where each region has an associated positive weight. The weighted region shortest path problem is to determine a shortest path in S between two points s, t in R2, where the distances are measured according to the weighted Euclidean metric-the length of a path is defined to be the weighted sum of (Euclidean) lengths of the sub-paths within each region. We show that this problem cannot be solved in the Algebraic Computation Model over the Rational Numbers (ACMQ). In the ACMQ, one can compute exactly any number that can be obtained from the rationals Q by applying a finite number of operations from +, -, \times, \div, \sqrt[k]{}, for any integer k >= 2. Our proof uses Galois theory and is based on Bajaj's technique.

Citations (36)

Summary

We haven't generated a summary for this paper yet.