Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Combinatorial Algorithm for All-Pairs Shortest Paths in Directed Vertex-Weighted Graphs with Applications to Disc Graphs (1111.6519v1)

Published 28 Nov 2011 in cs.DS

Abstract: We consider the problem of computing all-pairs shortest paths in a directed graph with real weights assigned to vertices. For an $n\times n$ 0-1 matrix $C,$ let $K_{C}$ be the complete weighted graph on the rows of $C$ where the weight of an edge between two rows is equal to their Hamming distance. Let $MWT(C)$ be the weight of a minimum weight spanning tree of $K_{C}.$ We show that the all-pairs shortest path problem for a directed graph $G$ on $n$ vertices with nonnegative real weights and adjacency matrix $A_G$ can be solved by a combinatorial randomized algorithm in time $$\widetilde{O}(n{2}\sqrt {n + \min{MWT(A_G), MWT(A_Gt)}})$$ As a corollary, we conclude that the transitive closure of a directed graph $G$ can be computed by a combinatorial randomized algorithm in the aforementioned time. $\widetilde{O}(n{2}\sqrt {n + \min{MWT(A_G), MWT(A_Gt)}})$ We also conclude that the all-pairs shortest path problem for uniform disk graphs, with nonnegative real vertex weights, induced by point sets of bounded density within a unit square can be solved in time $\widetilde{O}(n{2.75})$.

Citations (2)

Summary

We haven't generated a summary for this paper yet.