Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 419 tok/s Pro
Claude Sonnet 4 Pro
2000 character limit reached

Rate-optimal Bayesian intensity smoothing for inhomogeneous Poisson processes (1304.6017v2)

Published 22 Apr 2013 in math.ST and stat.TH

Abstract: We apply nonparametric Bayesian methods to study the problem of estimating the intensity function of an inhomogeneous Poisson process. We exhibit a prior on intensities which both leads to a computationally feasible method and enjoys desirable theoretical optimality properties. The prior we use is based on B-spline expansions with free knots, adapted from well-established methods used in regression, for instance. We illustrate its practical use in the Poisson process setting by analyzing count data coming from a call centre. Theoretically we derive a new general theorem on contraction rates for posteriors in the setting of intensity function estimation. Practical choices that have to be made in the construction of our concrete prior, such as choosing the priors on the number and the locations of the spline knots, are based on these theoretical findings. The results assert that when properly constructed, our approach yields a rate-optimal procedure that automatically adapts to the regularity of the unknown intensity function.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.