Test of mutually unbiased bases for six-dimensional photonic quantum systems (1304.4081v1)
Abstract: In quantum information, complementarity of quantum mechanical observables plays a key role. If a system resides in an eigenstate of an observable, the probability distribution for the values of a complementary observable is flat. The eigenstates of these two observables form a pair of mutually unbiased bases (MUBs). More generally, a set of MUBs consists of bases that are all pairwise unbiased. Except for specific dimensions of the Hilbert space, the maximal sets of MUBs are unknown in general. Even for a dimension as low as six, the identification of a maximal set of MUBs remains an open problem, although there is strong numerical evidence that no more than three simultaneous MUBs do exist. Here, by exploiting a newly developed holographic technique, we implement and test different sets of three MUBs for a single photon six-dimensional quantum state (a qusix), encoded either in a hybrid polarization-orbital angular momentum or a pure orbital angular momentum Hilbert space. A close agreement is observed between theory and experiments. Our results can find applications in state tomography, quantitative wave-particle duality, quantum key distribution and tests on complementarity and logical indeterminacy.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.