Papers
Topics
Authors
Recent
Search
2000 character limit reached

KNET: Integrating Hypermedia and Bayesian Modeling

Published 27 Mar 2013 in cs.AI | (1304.2345v1)

Abstract: KNET is a general-purpose shell for constructing expert systems based on belief networks and decision networks. Such networks serve as graphical representations for decision models, in which the knowledge engineer must define clearly the alternatives, states, preferences, and relationships that constitute a decision basis. KNET contains a knowledge-engineering core written in Object Pascal and an interface that tightly integrates HyperCard, a hypertext authoring tool for the Apple Macintosh computer, into a novel expert-system architecture. Hypertext and hypermedia have become increasingly important in the storage management, and retrieval of information. In broad terms, hypermedia deliver heterogeneous bits of information in dynamic, extensively cross-referenced packages. The resulting KNET system features a coherent probabilistic scheme for managing uncertainty, an objectoriented graphics editor for drawing and manipulating decision networks, and HyperCard's potential for quickly constructing flexible and friendly user interfaces. We envision KNET as a useful prototyping tool for our ongoing research on a variety of Bayesian reasoning problems, including tractable representation, inference, and explanation.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.