Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Empirical Evaluation of a Randomized Algorithm for Probabilistic Inference (1304.1498v1)

Published 27 Mar 2013 in cs.AI

Abstract: In recent years, researchers in decision analysis and artificial intelligence (Al) have used Bayesian belief networks to build models of expert opinion. Using standard methods drawn from the theory of computational complexity, workers in the field have shown that the problem of probabilistic inference in belief networks is difficult and almost certainly intractable. K N ET, a software environment for constructing knowledge-based systems within the axiomatic framework of decision theory, contains a randomized approximation scheme for probabilistic inference. The algorithm can, in many circumstances, perform efficient approximate inference in large and richly interconnected models of medical diagnosis. Unlike previously described stochastic algorithms for probabilistic inference, the randomized approximation scheme computes a priori bounds on running time by analyzing the structure and contents of the belief network. In this article, we describe a randomized algorithm for probabilistic inference and analyze its performance mathematically. Then, we devote the major portion of the paper to a discussion of the algorithm's empirical behavior. The results indicate that the generation of good trials (that is, trials whose distribution closely matches the true distribution), rather than the computation of numerous mediocre trials, dominates the performance of stochastic simulation. Key words: probabilistic inference, belief networks, stochastic simulation, computational complexity theory, randomized algorithms.

Citations (22)

Summary

We haven't generated a summary for this paper yet.