Papers
Topics
Authors
Recent
Search
2000 character limit reached

An Implementation of a Method for Computing the Uncertainty in Inferred Probabilities in Belief Networks

Published 6 Mar 2013 in cs.AI | (1303.1489v1)

Abstract: In recent years the belief network has been used increasingly to model systems in Al that must perform uncertain inference. The development of efficient algorithms for probabilistic inference in belief networks has been a focus of much research in AI. Efficient algorithms for certain classes of belief networks have been developed, but the problem of reporting the uncertainty in inferred probabilities has received little attention. A system should not only be capable of reporting the values of inferred probabilities and/or the favorable choices of a decision; it should report the range of possible error in the inferred probabilities and/or choices. Two methods have been developed and implemented for determining the variance in inferred probabilities in belief networks. These methods, the Approximate Propagation Method and the Monte Carlo Integration Method are discussed and compared in this paper.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.