Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 100 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A general theory for nonlinear sufficient dimension reduction: Formulation and estimation (1304.0580v1)

Published 2 Apr 2013 in math.ST and stat.TH

Abstract: In this paper we introduce a general theory for nonlinear sufficient dimension reduction, and explore its ramifications and scope. This theory subsumes recent work employing reproducing kernel Hilbert spaces, and reveals many parallels between linear and nonlinear sufficient dimension reduction. Using these parallels we analyze the properties of existing methods and develop new ones. We begin by characterizing dimension reduction at the general level of $\sigma$-fields and proceed to that of classes of functions, leading to the notions of sufficient, complete and central dimension reduction classes. We show that, when it exists, the complete and sufficient class coincides with the central class, and can be unbiasedly and exhaustively estimated by a generalized sliced inverse regression estimator (GSIR). When completeness does not hold, this estimator captures only part of the central class. However, in these cases we show that a generalized sliced average variance estimator (GSAVE) can capture a larger portion of the class. Both estimators require no numerical optimization because they can be computed by spectral decomposition of linear operators. Finally, we compare our estimators with existing methods by simulation and on actual data sets.

Citations (80)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.