Tropical covers of curves and their moduli spaces (1303.6478v1)
Abstract: We define the tropical moduli space of covers of a tropical line in the plane as weighted abstract polyhedral complex, and the tropical branch map recording the images of the simple ramifications. Our main result is the invariance of the degree of the branch map, which enables us to give a tropical intersection-theoretic definition of tropical triple Hurwitz numbers. We show that our intersection-theoretic definition coincides with the one given by Bertrand, Brugall\'e and Mikhalkin in the article "Tropical Open Hurwitz numbers" where a Correspondence Theorem for Hurwitz numbers is proved. Thus we provide a tropical intersection-theoretic justification for the multiplicities with which a tropical cover has to be counted. Our method of proof is to establish a local duality between our tropical moduli spaces and certain moduli spaces of relative stable maps to the projective line.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.