Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 67 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 121 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A Sequential Empirical Central Limit Theorem for Multiple Mixing Processes with Application to B-Geometrically Ergodic Markov Chains (1303.4537v2)

Published 19 Mar 2013 in math.PR

Abstract: We investigate the convergence in distribution of sequential empirical processes of dependent data indexed by a class of functions F. Our technique is suitable for processes that satisfy a multiple mixing condition on a space of functions which differs from the class F. This situation occurs in the case of data arising from dynamical systems or Markov chains, for which the Perron--Frobenius or Markov operator, respectively, has a spectral gap on a restricted space. We provide applications to iterative Lipschitz models that contract on average.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube