Papers
Topics
Authors
Recent
Search
2000 character limit reached

Decision problems for word-hyperbolic semigroups

Published 7 Mar 2013 in math.GR and cs.FL | (1303.1763v2)

Abstract: This paper studies decision problems for semigroups that are word-hyperbolic in the sense of Duncan & Gilman. A fundamental investigation reveals that the natural definition of a `word-hyperbolic structure' has to be strengthened slightly in order to define a unique semigroup up to isomorphism. The isomorphism problem is proven to be undecidable for word-hyperbolic semigroups (in contrast to the situation for word-hyperbolic groups). It is proved that it is undecidable whether a word-hyperbolic semigroup is automatic, asynchronously automatic, biautomatic, or asynchronously biautomatic. (These properties do not hold in general for word-hyperbolic semigroups.) It is proved that the uniform word problem for word-hyperbolic semigroup is solvable in polynomial time (improving on the previous exponential-time algorithm). Algorithms are presented for deciding whether a word-hyperbolic semigroup is a monoid, a group, a completely simple semigroup, a Clifford semigroup, or a free semigroup.

Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.