Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Orderability, contact non-squeezing, and Rabinowitz Floer homology (1302.6576v2)

Published 26 Feb 2013 in math.SG and math.DS

Abstract: We study Liouville fillable contact manifolds $(\Sigma,\xi)$ with non-zero Rabinowitz Floer homology and assign spectral numbers to paths of contactomorphisms. As a consequence we prove that $\widetilde{\mathrm{Cont}_0}(\Sigma,\xi)$ is orderable in the sense of Eliashberg and Polterovich. This provides a new class of orderable contact manifolds. If the contact manifold is in addition periodic or a prequantization space $M \times S1$ for $M$ a Liouville manifold, then we construct a contact capacity. This can be used to prove a general non-squeezing result, which amongst other examples in particular recovers the beautiful non-squeezing results from [EKP06].

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.