Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bilingual Terminology Extraction Using Multi-level Termhood (1302.4492v1)

Published 19 Feb 2013 in cs.CL

Abstract: Purpose: Terminology is the set of technical words or expressions used in specific contexts, which denotes the core concept in a formal discipline and is usually applied in the fields of machine translation, information retrieval, information extraction and text categorization, etc. Bilingual terminology extraction plays an important role in the application of bilingual dictionary compilation, bilingual Ontology construction, machine translation and cross-language information retrieval etc. This paper addresses the issues of monolingual terminology extraction and bilingual term alignment based on multi-level termhood. Design/methodology/approach: A method based on multi-level termhood is proposed. The new method computes the termhood of the terminology candidate as well as the sentence that includes the terminology by the comparison of the corpus. Since terminologies and general words usually have differently distribution in the corpus, termhood can also be used to constrain and enhance the performance of term alignment when aligning bilingual terms on the parallel corpus. In this paper, bilingual term alignment based on termhood constraints is presented. Findings: Experiment results show multi-level termhood can get better performance than existing method for terminology extraction. If termhood is used as constrain factor, the performance of bilingual term alignment can be improved.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Chengzhi Zhang (37 papers)
  2. Dan Wu (61 papers)
Citations (10)