Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

On the Damping-Induced Self-Recovery Phenomenon in Mechanical Systems with Several Unactuated Cyclic Variables (1302.2109v1)

Published 8 Feb 2013 in math.DS, math-ph, math.MP, math.OC, and physics.class-ph

Abstract: The damping-induced self-recovery phenomenon refers to the fundamental property of underactuated mechanical systems: if an unactuated cyclic variable is under a viscous damping-like force and the system starts from rest, then the cyclic variable will always move back to its initial condition as the actuated variables come to stop. The regular momentum conservation phenomenon can be viewed as the limit of the damping-induced self-recovery phenomenon in the sense that the self-recovery phenomenon disappears as the damping goes to zero. This paper generalizes the past result on damping-induced self-recovery for the case of a single unactuated cyclic variable to the case of multiple unactuated cyclic variables. We characterize a class of external forces that induce new conserved quantities, which we call the damping-induced momenta. The damping-induced momenta yield first-order asymptotically stable dynamics for the unactuated cyclic variables under some conditions, thereby inducing the self-recovery phenomenon. It is also shown that the viscous damping-like forces impose bounds on the range of trajectories of the unactuated cyclic variables. Two examples are presented to demonstrate the analytical discoveries: the planar pendulum with gimbal actuators and the three-link planar manipulator on a horizontal plane.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube