Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
132 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Arabic text summarization based on latent semantic analysis to enhance arabic documents clustering (1302.1612v1)

Published 6 Feb 2013 in cs.IR and cs.CL

Abstract: Arabic Documents Clustering is an important task for obtaining good results with the traditional Information Retrieval (IR) systems especially with the rapid growth of the number of online documents present in Arabic language. Documents clustering aim to automatically group similar documents in one cluster using different similarity/distance measures. This task is often affected by the documents length, useful information on the documents is often accompanied by a large amount of noise, and therefore it is necessary to eliminate this noise while keeping useful information to boost the performance of Documents clustering. In this paper, we propose to evaluate the impact of text summarization using the Latent Semantic Analysis Model on Arabic Documents Clustering in order to solve problems cited above, using five similarity/distance measures: Euclidean Distance, Cosine Similarity, Jaccard Coefficient, Pearson Correlation Coefficient and Averaged Kullback-Leibler Divergence, for two times: without and with stemming. Our experimental results indicate that our proposed approach effectively solves the problems of noisy information and documents length, and thus significantly improve the clustering performance.

Citations (57)

Summary

We haven't generated a summary for this paper yet.