Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A comparative study of root-based and stem-based approaches for measuring the similarity between arabic words for arabic text mining applications (1212.3634v1)

Published 14 Dec 2012 in cs.CL and cs.IR

Abstract: Representation of semantic information contained in the words is needed for any Arabic Text Mining applications. More precisely, the purpose is to better take into account the semantic dependencies between words expressed by the co-occurrence frequencies of these words. There have been many proposals to compute similarities between words based on their distributions in contexts. In this paper, we compare and contrast the effect of two preprocessing techniques applied to Arabic corpus: Rootbased (Stemming), and Stem-based (Light Stemming) approaches for measuring the similarity between Arabic words with the well known abstractive model -Latent Semantic Analysis (LSA)- with a wide variety of distance functions and similarity measures, such as the Euclidean Distance, Cosine Similarity, Jaccard Coefficient, and the Pearson Correlation Coefficient. The obtained results show that, on the one hand, the variety of the corpus produces more accurate results; on the other hand, the Stem-based approach outperformed the Root-based one because this latter affects the words meanings.

Summary

We haven't generated a summary for this paper yet.