Papers
Topics
Authors
Recent
Search
2000 character limit reached

Improved Accuracy of PSO and DE using Normalization: an Application to Stock Price Prediction

Published 5 Feb 2013 in cs.NE and cs.LG | (1302.0962v1)

Abstract: Data Mining is being actively applied to stock market since 1980s. It has been used to predict stock prices, stock indexes, for portfolio management, trend detection and for developing recommender systems. The various algorithms which have been used for the same include ANN, SVM, ARIMA, GARCH etc. Different hybrid models have been developed by combining these algorithms with other algorithms like roughest, fuzzy logic, GA, PSO, DE, ACO etc. to improve the efficiency. This paper proposes DE-SVM model (Differential EvolutionSupport vector Machine) for stock price prediction. DE has been used to select best free parameters combination for SVM to improve results. The paper also compares the results of prediction with the outputs of SVM alone and PSO-SVM model (Particle Swarm Optimization). The effect of normalization of data on the accuracy of prediction has also been studied.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.