Papers
Topics
Authors
Recent
2000 character limit reached

Channel Coding and Lossy Source Coding Using a Constrained Random Number Generator

Published 5 Feb 2013 in cs.IT and math.IT | (1302.0951v1)

Abstract: Stochastic encoders for channel coding and lossy source coding are introduced with a rate close to the fundamental limits, where the only restriction is that the channel input alphabet and the reproduction alphabet of the lossy source code are finite. Random numbers, which satisfy a condition specified by a function and its value, are used to construct stochastic encoders. The proof of the theorems is based on the hash property of an ensemble of functions, where the results are extended to general channels/sources and alternative formulas are introduced for channel capacity and the rate-distortion region. Since an ensemble of sparse matrices has a hash property, we can construct a code by using sparse matrices, where the sum-product algorithm can be used for encoding and decoding by assuming that channels/sources are memoryless.

Citations (34)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.