Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Upper Bound on the Capacity of non-Binary Deletion Channels (1301.6599v2)

Published 28 Jan 2013 in cs.IT and math.IT

Abstract: We derive an upper bound on the capacity of non-binary deletion channels. Although binary deletion channels have received significant attention over the years, and many upper and lower bounds on their capacity have been derived, such studies for the non-binary case are largely missing. The state of the art is the following: as a trivial upper bound, capacity of an erasure channel with the same input alphabet as the deletion channel can be used, and as a lower bound the results by Diggavi and Grossglauser are available. In this paper, we derive the first non-trivial non-binary deletion channel capacity upper bound and reduce the gap with the existing achievable rates. To derive the results we first prove an inequality between the capacity of a 2K-ary deletion channel with deletion probability $d$, denoted by $C_{2K}(d)$, and the capacity of the binary deletion channel with the same deletion probability, $C_2(d)$, that is, $C_{2K}(d)\leq C_2(d)+(1-d)\log(K)$. Then by employing some existing upper bounds on the capacity of the binary deletion channel, we obtain upper bounds on the capacity of the 2K-ary deletion channel. We illustrate via examples the use of the new bounds and discuss their asymptotic behavior as $d \rightarrow 0$.

Citations (4)

Summary

We haven't generated a summary for this paper yet.