A note on Nil and Jacobson radicals in graded rings (1301.2835v2)
Abstract: It was shown by Bergman that the Jacobson radical of a Z-graded ring is homogeneous. This paper shows that the analogous result holds for nil rings, namely, that the nil radical of a Z-graded ring is homogeneous. It is obvious that a subring of a nil ring is nil, but generally a subring of a Jacobson radical ring need not be a Jacobson radical ring. In this paper it is shown that every subring which is generated by homogeneous elements in a graded Jacobson radical ring is always a Jacobson radical ring. It is also observed that a ring whose all subrings are Jacobson radical rings is nil. Some new results on graded-nil rings are also obtained.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.