Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 38 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 469 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Solvable multi-species reaction-diffusion processes, with particle-dependent hopping rates (1301.2792v1)

Published 13 Jan 2013 in cond-mat.stat-mech

Abstract: By considering the master equation of the totally asymmetric exclusion process on a one-dimensional lattice and using two types of boundary conditions (i.e. interactions), two new families of the multi-species reaction-diffusion processes, with particle-dependent hopping rates, are investigated. In these models (i.e. reaction-diffusion and drop-push systems), we have the case of distinct particles where each particle $A_\alpha$ has its own intrinsic hopping rate $v_{\alpha}$. They also contain the parameters that control the annihilation-diffusion rates (including pair-annihilation and coagulation to the right and left). We obtain two distinct new models. It is shown that these models are exactly solvable in the sense of the Bethe anstaz. The two-particle conditional probabilities and the large-time behavior of such systems are also calculated.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.