Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s
GPT-5 High 12 tok/s Pro
GPT-4o 96 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 217 tok/s Pro
2000 character limit reached

Noncommutative Residue and Dirac operators for Manifolds with the Conformal Robertson-Walker metric (1301.2652v1)

Published 12 Jan 2013 in math.DG

Abstract: In this paper, we prove a Kastler-Kalau-Walze type theorem for 4-dimensional and 6-dimensional spin manifolds with boundary associated with the conformal Robertson-Walker metric. And we give two kinds of operator theoretic explanations of the gravitational action for boundary in the case of 4-dimensional manifolds with flat boundary. In particular, for 6-dimensional spin manifolds with boundary with the conformal Robertson-Walker metric, we obtain the noncommutative residue of the composition of $\pi+D{-1}$ and $\pi+D{-3}$ is proportional to the Einstein-Hilbert action for manifolds with boundary.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)