Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Identifying the Information Gain of a Quantum Measurement (1301.1594v2)

Published 8 Jan 2013 in quant-ph, cs.IT, and math.IT

Abstract: We show that quantum-to-classical channels, i.e., quantum measurements, can be asymptotically simulated by an amount of classical communication equal to the quantum mutual information of the measurement, if sufficient shared randomness is available. This result generalizes Winter's measurement compression theorem for fixed independent and identically distributed inputs [Winter, CMP 244 (157), 2004] to arbitrary inputs, and more importantly, it identifies the quantum mutual information of a measurement as the information gained by performing it, independent of the input state on which it is performed. Our result is a generalization of the classical reverse Shannon theorem to quantum-to-classical channels. In this sense, it can be seen as a quantum reverse Shannon theorem for quantum-to-classical channels, but with the entanglement assistance and quantum communication replaced by shared randomness and classical communication, respectively. The proof is based on a novel one-shot state merging protocol for "classically coherent states" as well as the post-selection technique for quantum channels, and it uses techniques developed for the quantum reverse Shannon theorem [Berta et al., CMP 306 (579), 2011].

Citations (61)

Summary

We haven't generated a summary for this paper yet.