Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The information-theoretic costs of simulating quantum measurements (1206.4121v2)

Published 19 Jun 2012 in quant-ph, cs.IT, and math.IT

Abstract: Winter's measurement compression theorem stands as one of the most penetrating insights of quantum information theory (QIT). In addition to making an original and profound statement about measurement in quantum theory, it also underlies several other general protocols in QIT. In this paper, we provide a full review of Winter's measurement compression theorem, detailing the information processing task, giving examples for understanding it, reviewing Winter's achievability proof, and detailing a new approach to its single-letter converse theorem. We prove an extension of the theorem to the case in which the sender is not required to receive the outcomes of the simulated measurement. The total cost of common randomness and classical communication can be lower for such a "non-feedback" simulation, and we prove a single-letter converse theorem demonstrating optimality. We then review the Devetak-Winter theorem on classical data compression with quantum side information, providing new proofs of its achievability and converse parts. From there, we outline a new protocol that we call "measurement compression with quantum side information," announced previously by two of us in our work on triple trade-offs in quantum Shannon theory. This protocol has several applications, including its part in the "classically-assisted state redistribution" protocol, which is the most general protocol on the static side of the quantum information theory tree, and its role in reducing the classical communication cost in a task known as local purity distillation. We also outline a connection between measurement compression with quantum side information and recent work on entropic uncertainty relations in the presence of quantum memory. Finally, we prove a single-letter theorem characterizing measurement compression with quantum side information when the sender is not required to obtain the measurement outcome.

Citations (101)

Summary

We haven't generated a summary for this paper yet.