Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
117 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spectral Condition-Number Estimation of Large Sparse Matrices (1301.1107v6)

Published 7 Jan 2013 in cs.NA and math.NA

Abstract: We describe a randomized Krylov-subspace method for estimating the spectral condition number of a real matrix A or indicating that it is numerically rank deficient. The main difficulty in estimating the condition number is the estimation of the smallest singular value \sigma_{\min} of A. Our method estimates this value by solving a consistent linear least-squares problem with a known solution using a specific Krylov-subspace method called LSQR. In this method, the forward error tends to concentrate in the direction of a right singular vector corresponding to \sigma_{\min}. Extensive experiments show that the method is able to estimate well the condition number of a wide array of matrices. It can sometimes estimate the condition number when running a dense SVD would be impractical due to the computational cost or the memory requirements. The method uses very little memory (it inherits this property from LSQR) and it works equally well on square and rectangular matrices.

Citations (11)

Summary

We haven't generated a summary for this paper yet.