Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Randomized block Krylov methods for approximating extreme eigenvalues (2110.00649v1)

Published 1 Oct 2021 in math.NA and cs.NA

Abstract: Randomized block Krylov subspace methods form a powerful class of algorithms for computing the extreme eigenvalues of a symmetric matrix or the extreme singular values of a general matrix. The purpose of this paper is to develop new theoretical bounds on the performance of randomized block Krylov subspace methods for these problems. For matrices with polynomial spectral decay, the randomized block Krylov method can obtain an accurate spectral norm estimate using only a constant number of steps (that depends on the decay rate and the accuracy). Furthermore, the analysis reveals that the behavior of the algorithm depends in a delicate way on the block size. Numerical evidence confirms these predictions.

Citations (8)

Summary

We haven't generated a summary for this paper yet.