Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exploiting Functional Dependence in Bayesian Network Inference (1301.0609v1)

Published 12 Dec 2012 in cs.AI

Abstract: We propose an efficient method for Bayesian network inference in models with functional dependence. We generalize the multiplicative factorization method originally designed by Takikawa and D Ambrosio(1999) FOR models WITH independence OF causal influence.Using a hidden variable, we transform a probability potential INTO a product OF two - dimensional potentials.The multiplicative factorization yields more efficient inference. FOR example, IN junction tree propagation it helps TO avoid large cliques. IN ORDER TO keep potentials small, the number OF states OF the hidden variable should be minimized.We transform this problem INTO a combinatorial problem OF minimal base IN a particular space.We present an example OF a computerized adaptive test, IN which the factorization method IS significantly more efficient than previous inference methods.

Citations (33)

Summary

We haven't generated a summary for this paper yet.