Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 226 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A Framework of Constraint Preserving Update Schemes for Optimization on Stiefel Manifold (1301.0172v3)

Published 2 Jan 2013 in math.OC

Abstract: This paper considers optimization problems on the Stiefel manifold $X{\mathsf{T}}X=I_p$, where $X\in \mathbb{R}{n \times p}$ is the variable and $I_p$ is the $p$-by-$p$ identity matrix. A framework of constraint preserving update schemes is proposed by decomposing each feasible point into the range space of $X$ and the null space of $X{\mathsf{T}}$. While this general framework can unify many existing schemes, a new update scheme with low complexity cost is also discovered. Then we study a feasible Barzilai-Borwein-like method under the new update scheme. The global convergence of the method is established with an adaptive nonmonotone line search. The numerical tests on the nearest low-rank correlation matrix problem, the Kohn-Sham total energy minimization and a specific problem from statistics demonstrate the efficiency of the new method. In particular, the new method performs remarkably well for the nearest low-rank correlation matrix problem in terms of speed and solution quality and is considerably competitive with the widely used SCF iteration for the Kohn-Sham total energy minimization.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.