Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Analysis of Large-scale Traffic Dynamics using Non-negative Tensor Factorization (1212.4675v1)

Published 18 Dec 2012 in cs.LG

Abstract: In this paper, we present our work on clustering and prediction of temporal dynamics of global congestion configurations in large-scale road networks. Instead of looking into temporal traffic state variation of individual links, or of small areas, we focus on spatial congestion configurations of the whole network. In our work, we aim at describing the typical temporal dynamic patterns of this network-level traffic state and achieving long-term prediction of the large-scale traffic dynamics, in a unified data-mining framework. To this end, we formulate this joint task using Non-negative Tensor Factorization (NTF), which has been shown to be a useful decomposition tools for multivariate data sequences. Clustering and prediction are performed based on the compact tensor factorization results. Experiments on large-scale simulated data illustrate the interest of our method with promising results for long-term forecast of traffic evolution.

Citations (7)

Summary

We haven't generated a summary for this paper yet.