Two-step rational extensions of the harmonic oscillator: exceptional orthogonal polynomials and ladder operators (1212.3474v2)
Abstract: The type III Hermite $X_m$ exceptional orthogonal polynomial family is generalized to a double-indexed one $X_{m_1,m_2}$ (with $m_1$ even and $m_2$ odd such that $m_2 > m_1$) and the corresponding rational extensions of the harmonic oscillator are constructed by using second-order supersymmetric quantum mechanics. The new polynomials are proved to be expressible in terms of mixed products of Hermite and pseudo-Hermite ones, while some of the associated potentials are linked with rational solutions of the Painlev\'e IV equation. A novel set of ladder operators for the extended oscillators is also built and shown to satisfy a polynomial Heisenberg algebra of order $m_2-m_1+1$, which may alternatively be interpreted in terms of a special type of $(m_2-m_1+2)$th-order shape invariance property.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.