Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Energy-minimizing error-correcting codes (1212.1913v2)

Published 9 Dec 2012 in math.CO, cs.IT, and math.IT

Abstract: We study a discrete model of repelling particles, and we show using linear programming bounds that many familiar families of error-correcting codes minimize a broad class of potential energies when compared with all other codes of the same size and block length. Examples of these universally optimal codes include Hamming, Golay, and Reed-Solomon codes, among many others, and this helps explain their robustness as the channel model varies. Universal optimality of these codes is equivalent to minimality of their binomial moments, which has been proved in many cases by Ashikhmin and Barg. We highlight connections with mathematical physics and the analogy between these results and previous work by Cohn and Kumar in the continuous setting, and we develop a framework for optimizing the linear programming bounds. Furthermore, we show that if these bounds prove a code is universally optimal, then the code remains universally optimal even if one codeword is removed.

Citations (21)

Summary

We haven't generated a summary for this paper yet.