Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Criterion for Decoding on the BSC (2202.00240v5)

Published 1 Feb 2022 in cs.IT and math.IT

Abstract: We present an approach to showing that a linear code is resilient to random errors. We use this approach to obtain decoding results for both transitive codes and Reed-Muller codes. We give three kinds of results about linear codes in general, and transitive linear codes in particular. 1) We give a tight bound on the weight distribution of every transitive linear code $C \subseteq \mathbb{F}2N$: $\Pr{c \in C}[|c| = \alpha N] \leq 2{-(1-h(\alpha)) \mathsf{dim}(C)}$. 2) We give a criterion that certifies that a linear code $C$ can be decoded on the binary symmetric channel. Let $K_s(x)$ denote the Krawtchouk polynomial of degree $s$, and let $C\perp$ denote the dual code of $C$. We show that bounds on $\mathbb{E}{c \in C{\perp}}[ K{\epsilon N}(|c|)2]$ imply that $C$ recovers from errors on the binary symmetric channel with parameter $\epsilon$. Weaker bounds can be used to obtain list-decoding results using similar methods. One consequence of our criterion is that whenever the weight distribution of $C\perp$ is sufficiently close to the binomial distribution in some interval around $\frac{N}{2}$, $C$ is resilient to $\epsilon$-errors. 3) We combine known estimates for the Krawtchouk polynomials with our weight bound for transitive codes, and with known weight bounds for Reed-Muller codes, to obtain list-decoding results for both these families of codes. In some regimes, our bounds for Reed-Muller codes achieve the information-theoretic optimal trade-off between rate and list size.

Citations (3)

Summary

We haven't generated a summary for this paper yet.