Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Reversibility in Queueing Models (1212.0398v3)

Published 3 Dec 2012 in math.PR

Abstract: In stochastic models for queues and their networks, random events evolve in time. A process for their backward evolution is referred to as a time reversed process. It is often greatly helpful to view a stochastic model from two different time directions. In particular, if some property is unchanged under time reversal, we may better understand that property. A concept of reversibility is invented for this invariance. Local balance for a stationary Markov chain has been used for a weaker version of the reversibility. However, it is still too strong for queueing applications. We are concerned with a continuous time Markov chain, but dose not assume it has the stationary distribution. We define reversibility in structure as an invariant property of a family of the set of models under certain operation. The member of this set is a pair of transition rate function and its supporting measure, and each set represents dynamics of queueing systems such as arrivals and departures. We use a permutation {\Gamma} of the family menmbers, that is, the sets themselves, to describe the change of the dynamics under time reversal. This reversibility is is called {\Gamma}-reversibility in structure. To apply these definitions, we introduce new classes of models, called reacting systems and self-reacting systems. Using those definitions and models, we give a unified view for queues and their networks which have reversibility in structure, and show how their stationary distributions can be obtained. They include symmetric service, batch movements and state dependent routing.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube