Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Almost-$C^1$ splines: Biquadratic splines on unstructured quadrilateral meshes and their application to fourth order problems (2201.11491v1)

Published 27 Jan 2022 in math.NA and cs.NA

Abstract: Isogeometric Analysis generalizes classical finite element analysis and intends to integrate it with the field of Computer-Aided Design. A central problem in achieving this objective is the reconstruction of analysis-suitable models from Computer-Aided Design models, which is in general a non-trivial and time-consuming task. In this article, we present a novel spline construction, that enables model reconstruction as well as simulation of high-order PDEs on the reconstructed models. The proposed almost-$C1$ are biquadratic splines on fully unstructured quadrilateral meshes (without restrictions on placements or number of extraordinary vertices). They are $C1$ smooth almost everywhere, that is, at all vertices and across most edges, and in addition almost (i.e. approximately) $C1$ smooth across all other edges. Thus, the splines form $H2$-nonconforming analysis-suitable discretization spaces. This is the lowest-degree unstructured spline construction that can be used to solve fourth-order problems. The associated spline basis is non-singular and has several B-spline-like properties (e.g., partition of unity, non-negativity, local support), the almost-$C1$ splines are described in an explicit B\'ezier-extraction-based framework that can be easily implemented. Numerical tests suggest that the basis is well-conditioned and exhibits optimal approximation behavior.

Citations (17)

Summary

We haven't generated a summary for this paper yet.