Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 97 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 100 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Kimi K2 186 tok/s Pro
2000 character limit reached

Strongly Nil-*-Clean Rings (1211.5286v2)

Published 22 Nov 2012 in math.RA

Abstract: A -ring $R$ is called a strongly nil--clean ring if every element of $R$ is the sum of a projection and a nilpotent element that commute with each other. In this article, we show that $R$ is a strongly nil--clean ring if and only if every idempotent in $R$ is a projection, $R$ is periodic, and $R/J(R)$ is Boolean. For any commutative *-ring $R$, we prove that the algebraic extension $R[i]$ where $i2=\mu i+\eta$ for some $\mu,\eta\in R$ is strongly nil--clean if and only if $R$ is strongly nil--clean and $\mu\eta$ is nilpotent. The relationships between Boolean *-rings and strongly nil--clean rings are also obtained.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.