Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 95 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 95 tok/s Pro
GPT OSS 120B 391 tok/s Pro
Kimi K2 159 tok/s Pro
2000 character limit reached

Idempotents, Localizations and Picard groups of A(1)-modules (1211.0213v2)

Published 1 Nov 2012 in math.AT and math.RT

Abstract: We analyze the stable isomorphism type of polynomial rings on degree 1 generators as modules over the sub-algebra A(1) = <Sq^1, Sq^2> of the mod 2 Steenrod algebra. Since their augmentation ideals are Q_1-local, we do this by studying the Q_i-local subcategories and the associated Margolis localizations. The periodicity exhibited by such modules reduces the calculation to one that is finite. We show that these are the only localizations which preserve tensor products, by first computing the Picard groups of these subcategories and using them to determine all idempotents in the stable category of bounded-below A(1)-modules. We show that the Picard groups of the whole category are detected in the local Picard groups, and show that every bounded-below A(1) -module is uniquely expressible as an extension of a Q_0-local module by a Q_1-local module, up to stable equivalence. Applications include correct, complete proofs of Ossa's theorem, applications to Powell's work describing connective K-theory of classifying spaces of elementary abelian groups in functorial terms, and Ault's work on the hit problem.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)