Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Homological techniques for the analysis of the dimension of triangular spline spaces (1210.4639v1)

Published 17 Oct 2012 in math.AG

Abstract: The spline space $C_kr(\Delta)$ attached to a subdivided domain $\Delta$ of $\R{d} $ is the vector space of functions of class $C{r}$ which are polynomials of degree $\le k$ on each piece of this subdivision. Classical splines on planar rectangular grids play an important role in Computer Aided Geometric Design, and spline spaces over arbitrary subdivisions of planar domains are now considered for isogeometric analysis applications. We address the problem of determining the dimension of the space of bivariate splines $C_kr(\Delta)$ for a triangulated region $\Delta$ in the plane. Using the homological introduced by Billera (1988), we number the vertices and establish a formula for an upper bound on the dimension. There is no restriction on the ordering and we obtain more accurate approximations to the dimension than previous methods and furthermore, in certain cases even an exact value can be found. The construction makes also possible to get a short proof for the dimension formula when $k\ge 4r+1$, and the same method we use in this proof yields the dimension straightaway for many other cases.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.