Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Distribution of squarefree values of sequences associated with elliptic curves (1210.3433v2)

Published 12 Oct 2012 in math.NT

Abstract: Let E be a non-CM elliptic curve defined over Q. For each prime p of good reduction, E reduces to a curve E_p over the finite field F_p. For a given squarefree polynomial f(x,y), we examine the sequences f_p(E) := f(a_p(E), p), whose values are associated with the reduction of E over F_p. We are particularly interested in two sequences: f_p(E) =p + 1 - a_p(E) and f_p(E) = a_p(E)2 - 4p. We present two results towards the goal of determining how often the values in a given sequence are squarefree. First, for any fixed curve E, we give an upper bound for the number of primes p up to X for which f_p(E) is squarefree. Moreover, we show that the conjectural asymptotic for the prime counting function \pi_{E,f}{SF}(X) := #{p \leq X: f_p(E) is squarefree} is consistent with the asymptotic for the average over curves E in a suitable box.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube