Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Twisting all the way: from algebras to morphisms and connections (1210.1143v1)

Published 3 Oct 2012 in math.QA, hep-th, math-ph, and math.MP

Abstract: Given a Hopf algebra H and an algebra A that is an H-module algebra we consider the category of left H-modules and A-bimodules, where morphisms are just right A-linear maps (not necessarily H-equivariant). Given a twist F of H we then quantize (deform) H to HF, A to A_\star and correspondingly the category of left H-modules and A-bimodules to the category of left HF-modules and A_\star-bimodules. If we consider a quasitriangular Hopf algebra H, a quasi-commutative algebra A and quasi-commutative A-bimodules, we can further construct and study tensor products over A of modules and of morphisms, and their twist quantization. This study leads to the definition of arbitrary (i.e., not necessarily H-equivariant) connections on quasi-commutative A-bimodules, to extend these connections to tensor product modules and to quantize them to A_\star-bimodule connections. Their curvatures and those on tensor product modules are also determined.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)